De novo Analysis of the Epiphytic Transcriptome of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii and Identification of Candidate Secreted Effector Proteins
نویسندگان
چکیده
The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus's agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant.
منابع مشابه
Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action
Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capa...
متن کاملMolecular identification of some anamorphic powdery mildews (Erysiphales) in Guilan province, north of Iran
In this study, ITS–rDNA region was used to identify some anamorphic powdery mildews in Guilan province. According to the results, Erysiphe species on Vicia faba and Sesbania punicea showed 100% similarity to each other, however, without ITS sequence of holotype of E. sesbaniae it is impossible to make conclusion whether Vicia faba powdery mildew fungus actually belongs to E. sesbaniae or E. tri...
متن کاملThe Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions.
The powdery mildew fungi are obligate biotrophic plant pathogens that develop a specialized structure for parasitism termed haustorium, which is responsible for nutrient uptake and factor exchange with the plant. In this work, we present a detailed microscopy analysis of the haustoria of the cucurbit powdery mildew fungus Podosphaera xanthii, a major limiting factor for cucurbit production worl...
متن کاملA brief global review on the species of cucurbit powdery mildew fungi and new records in Taiwan
In spite of the economic importance of powdery mildew on cucurbits, literature and databases about the fungal species reveal different species numbers and names, often indicating only two species, with inconsistent host specificities for different members of Cucurbitaceae. Revision of the available literature indicates the presence of at least six species of powdery mildews on Cucurbitaceae wit...
متن کاملThe Barley Powdery Mildew Effector Candidates CSEP0081 and CSEP0254 Promote Fungal Infection Success
Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector Proteins (CSEPs) predicted from the barley powdery mildew fungal genome, only a few have been studied an...
متن کامل